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1 Introduction

Operating from February 1959 until April 1994, the Transient Reactor Test Facility (TREAT)
at Idaho National Laboratory (INL) was specifically built to conduct transient reactor tests
where the test material is subjected to neutron pulses that can simulate conditions ranging
from mild upsets to severe reactor accidents. The reactor was constructed to test fast reactor
fuels, but has also been used for light water reactor fuel testing as well as other exotic spe-
cial purpose fuels. [1, 2] TREAT is an air-cooled, thermal-spectrum test facility designed
to evaluate reactor fuels and structural materials under simulated nuclear excursions and
transient power/cooling mismatch situations in a nuclear reactor [3]. Such testing involves
placing fuel or material into the TREAT core and subjecting it to short bursts of intense,
high-power neutron radiation. After the experiment is completed, the fuel or material is
analyzed to determine the effects of the power burst. The resulting information is then
used to guide the development and improvement of advanced nuclear fuel designs, and to
validate computer models of fuel and core behavior required for U.S. Nuclear Regulatory
Commission (NRC) evaluation of nuclear power reactor design and safety evaluations [2].

Historical methods used for pre-transient calculations were very approximate low order
methods that required a number of reduced and full power tests to obtain correction factors
to improve the prediction of the full power transient prior to the test itself. The use of mod-
ern modeling and simulation (M&S) tools, capturing the multi-physics nature of TREAT
operation and experimentation, has the potential for reducing the number of low and high
power calibration tests needed prior to full power operations for a transient experiment.
This would result in significant operational efficiency with corresponding cost savings, and
would also lay the groundwork for improved fidelity in experiment design. Hence, INL is
engaged in efforts to develop full multi-physics modeling capabilities to predict core tran-
sient behavior (power excursions with thermal feedback) and its coupling with experimen-
tal configurations, supported by the Nuclear Energy Advanced Modeling and Simulation
(NEAMS) program within the U.S. Department of Energy Office of Nuclear Energy[4].

Transient testing involves placement of fuel samples into the core of specialized test re-
actors that are capable of performing a range of transient maneuvers to simulate accident
conditions that require the reactor produce short bursts of hight neutron flux and gamma
radiation. Testing fuel in a high flux environment is used to generate high power energy
deposition in test fuel samples, accident-simulation conditions is a key step in licensing nu-
clear fuels for use in existing and future nuclear power plants. Transient testing of nuclear
fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In ad-
dition, modern fuel development and design increasingly relies on modeling and simulation
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efforts that must be informed and validated using specially designed material performance
separate effects studies. These studies will require experimental facilities that are able to
support variable scale, highly instrumented tests providing data that have appropriate spa-
tial and temporal resolution. Finally, there are efforts now underway to develop advanced
light water reactor (LWR) fuels with enhanced performance and accident tolerance. These
advanced reactor designs will also require new fuel types. These new fuels need to be tested
in a controlled environment in order to learn how they respond to accident conditions. For
these applications, transient reactor testing is needed to help design fuels with improved
performance.

Early in TREAT operations, a fast neutron hodoscope was added to TREAT to providing a
real-time imaging technology. A hodoscope is an instrument used to detect particles emit-
ted from a source and determine their trajectories. Hodoscopes are generally constructed of
several segments of filter, collimators and detectors; the combination of these segments is
then used to infer where the particle passed through hodoscope by the location at which the
particle is detected. A fast-neutron hodoscope is used to detect fast neutrons emitted as a
result of fissions in a nuclear fuel sample. The TREAT hodoscope system was developed to
provide a imaging system to view fuel motion and failure during rapid power excursions,
albeit with a limited degree of spatial resolution. The hodoscope concept was proposed
in 1963 and tests performed in 1964 showed a high signal-to-noise ratio for fast-neutron
detection. The hodoscope was first operational within TREAT by 1965, although it has
gone through a number of upgrades over its existence, and additional, more high-fidelity
upgrades are anticipated in the next few years after restart.

The fast-neutron hodoscope at TREAT has been used to detect fuel motion within test
samples inserted in the center of the reactor core. The hodoscope system was built to
support nuclear fuel performance testing by providing a mechanism to detect when fuel
motion is induced under simulated accident conditions. Optical detection methods were
used in the past by enclosing test capsules within a quartz vessel; however, quartz does not
have the strength necessary to maintain structural integrity for experiments performed in
pressures representative of reactor systems. Hence optical methods cannot be used with
high pressure containment environments due to opacity of pressure vessel walls, as well
as other experimental apparati. However, those materials are generally transparent to fast
neutrons generated withing the test fuel specimen(s).

The current TREAT hodoscope system includes components necessary to collect, store and
process data providing time and spatial resolution of fuel motion prior to, during and after
a transient experiment. The hodoscope uses collimators and two sets of detectors located
outside the reactor core for fast neutron measurements. Thus, it relies on fast neutrons
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born in the test sample(s) to travel significant distances (approximately 3 m) through air to
reach the detector pairs. The TREAT hodoscope configuration is illustrated in Fig. 1. As
seen by the hodoscope, the planar cross sectional area at the location of test fuel samples
measures 5.7 cm in width by 52 cm in height, with 10 columns and 36 rows of slots in
a steel collimator for a total of 360 slots; however, a spatial resolution of fuel motion as
small as 0.25 by 8 mm can be achieved. The exits of the collimator slots are aligned with the
two back-to-back neutron detectors. The first is a methane gas-filled proportional counter
adapted from a design proven for the hodoscope used at the CABRI transient facility; the
second is a proton-recoil scintillator that consists of a thin film of ZnS applied to lucite,
which together form the button, known as a Hornyak button. Scintillations within the
buttons are amplified in photomultiplier tubes. Data acquisition systems collect data in real
time for each detector pair at each collimator slot. The collimator and detectors are external
to the reactor.

2 Motivation

Simulation of neutron streaming over long distances in optically thin narrow pipes sur-
rounded by optically thicker materials that can absorb and/or scatter neutrons presents a
simulation challenge to most neutron transport methods. Without sophisticated variance
reduction techniques, this problem can be intractable for Monte Carlo techniques. De-
terministic methods are often limited due to large angular discretization errors, this phe-
nomenon is commonly known as ray effects. The uncollided component of the angular flux
solution is the most anisotropic part and it can be difficult for discrete ordinate methods to
accurately represent. The number of discrete angles required to overcome these ray effects
is prohibitively large for the hodoscope configuration. Hence, other approaches must be
taken to better simulate neutron streaming within the hodoscope collimator slots.

Note that the approach we are proposing for the hodoscope is not necessary in order to
model the TREAT core itself. Other streaming effects are present within the core itself,
notably within air gaps between between fuel elements and between the core and its sur-
rounding permanent reflector; these streaming effects are treated differently[4]. The in
present work we are focused on correction for the inability of a discrete ordinates approach
to yield accurate uncollided fluxes in the fast-neutron hodoscope due to ray effects.

Angular discretization techniques (SN and PN) for the transport equation are notoriously
poor at accurately capturing streaming effects. However, it has long been recognized that

3



an analytical or semi-analytical treatment of the uncollided flux, coupled with a discrete
ordinate treatment of the collided flux, can yield dramatic improvements in accuracy and
computational efficiency. In this report, we present an algorithm for semi-analytical calcu-
lation of the uncollided flux. The algorithm seeks to compute:

1. The exiting uncollided flux for a set of points located in a volume of interest (e.g.,
detector regions) or on surfaces of interest (e.g., detector surfaces). The uncollided
angular flux is reported for each source point (e.g., points in a testing apparatus such
as the Multi-SERTTA test vessel[5]). The direction of flight is from the source point
to the target (surface or volume) point. The source points are chosen to be spatial
quadrature points that integrate the source volume (or source surface).

2. Spatial and angular distributions of the uncollided flux in every cell in the problem.
These provide all of the information necessary to form the first-collision source in
each cell.

Figure 1: Plan and elevation views of a cross-section of the reactor, showing the relative
orientation of the core, a test item, reactor structural materials, and components of the 1.2
m collimator hodoscope at TREAT [6].
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3 Theory

3.1 First and Last-Collision Source Treatments

Using operator notation, the transport problem can be viewed as

Lψ = Hψ +Q ,

where L is the streaming+collision operator (ΩΩΩ ·∇∇∇+σt), H is the scattering operator, and
Q is an extraneous source. The PN method requires a high degree N to capture anisotropic
angular flux distributions and the SN method suffers from ray effects due to the angular
quadratures only being rotationally invariant by octant.

However, the L operator can be inverted semi-analytically with great accuracy through ray-
tracing in arbitrary geometries. Hence, the idea of decomposing the flux into collided and
uncollided components as ψ = ψu +ψc. The uncollided component is obtained from

LRT
ψ

u,RT = Q ,

where the superscript RT denotes ray-tracing. Using the uncollided flux, a first-collided
scattering source Hψu,RT is created for the collided equation as

LSN
ψ

c = Hψ
c +Hψ

u,RT ,

where the superscript SN denotes the SN solve. Typically, a source iteration process is then
employed to solve the above equation:

LSN
ψ

c,`+1 = Hψ
c,`+Hψu,RT .

Upon convergence (superscript ∞), the total angular flux is obtained by summation ψ =
ψu,RT +ψc,∞.

If ψc contributes significantly to the desired quantities of interest (e.g., detector reaction
rate) and still suffers from ray effects, we can further refine the methodology by using the
collided SN solution as a means to compute the scattering source due to particles having
scattered more than once, Hψc,∞, and one additional ray-tracing is performed toward the
detector location. This is called the last-collision source process and it also uses ray-tracing
and delivers the full angular flux ψRT = ψu,RT +ψc,RT as

LRT
ψ

RT = Hψ
c,∞ +Hψ

u,rt +Q ,
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or, one can just solve for the ray-tracing collided part (because we already have the ray-
tracing uncollided part from LRT ψu,RT = Q):

LRT
ψ

c,RT = Hψ
c,∞ +Hψ

u,RT .

3.2 Uncollided flux computation

First, we propose a method to compute the uncollided flux for any target cells, K (where
K ∈ (D\S )) that are different than the source cell, K′ ∈ S ). With this notation, D de-
scribes the entire domain and S describes the subset of the domain that contains the
source(s). Note that by superposition principle, we can deal with all source cells simul-
taneously (the ray tracing process due to multiple source cells is embarrassingly parallel).
However, for clarity, the method is presented for one source at a time and the uncollided
flux is computed in all cells due to that one source (we distinguish between the target cell
containing that source, K = K′, or not, K 6= K′).

3.2.1 Target cell 6= source cell (K 6= K′)

The exact uncollided scalar flux at a quadrature point q in a target cell K as a result of a
volumetric source cell K′ is

φ
exact(rq) =

∫
K′

dr
exp(−τ(r,rq))

R2
q(r)

S(r,ΩΩΩq(r)) ,

where τ(r,rq) is the optical thickness from a source point at r to a target quadrature point
at rq, Rq(r) = |r− rq|, ΩΩΩq(r) is the direction from source position r to target quadrature
point rq, and S has units n/cm3·s·str.

Introducing spatial quadrature q′ in the source cell K′ with weight wq′ we have

φ(rq) = ∑
q′

wq′
exp(−τ(rq′,rq))

R2
q′q(r)

S(rq′,ΩΩΩq′q) ,

where Rq′q is the distance from source quadrature point rq′ to target quadrature point rq,
and ΩΩΩq′q is the direction from source quadrature point rq′ to target quadrature point rq.
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Lastly, introducing spatial quadrature q in the target cell with weight wq, we then have the
cell-average uncollided scalar flux in cell K (as a result of source cell K′) as

φ̄
K′
K =

1
VK

∑
q

wq ∑
q′

w′q
exp(−τ(rq′,rq))

R2
q′q(r)

S(rq′ ,ΩΩΩq′q) , (1)

where VK is the volume of target cell K.

3.2.2 Target cell = source cell (K = K′)

With the above, the uncollided angular flux was computed using Green’s function which
contains a 1/R2 term. Hence, computing the uncollided flux inside the source cell could be
problematic. It could potentially be inaccurate in the neighboring cells of the source cells
as well. To combat this, we use the following approach.

The cell-averaged scalar flux in a given cell K due to a source in the same cell is

φ̄
K
K =

1
VK

∫
K

dr
∫

K′
dr′

exp(−τ(r,r′))
R2 S(r′,ΩΩΩR) ,

where R = r−r′, R = ||R||, and ΩΩΩ = R/R. When K = K′, we will eliminate the 1/R2 term
by introducing the change of variable r′ = r−R = r−RΩΩΩ, so that dr′ = dr = R2dRdΩ to
obtain

φ̄
K
K =

1
VK

∫
K

dr
∫

4π

dΩ

∫ R+(r,ΩΩΩ)

R−(r,ΩΩΩ)
dR exp(−τ(r,r′))S(r′,ΩΩΩ) ,

where R± is the distance from r to the first (R−) or second R+ intersections of the back
trajectory at r in the direction ΩΩΩ with the surface of K′ (assuming the later is convex). We
then require a quadrature for ΩΩΩ (for example, the one used for the SN discrete ordinate
approximation) and a quadrature for r in K.

Noting that R−(r,ΩΩΩ) = 0 and r′ = r−RΩΩΩ, we then have the exact cell-averaged uncol-
lided scalar flux (as the result of source cell K′ = target cell K, zeroth spatial and angular
moments) as

φ̄
K
K =

1
VK

∫
K

dr
∫

4π

dΩ

∫ R+(r,ΩΩΩ)

0
dR exp(−τ(r,r−RΩΩΩ))S(r−RΩΩΩ,ΩΩΩ) .

Introducing 1D quadrature q with weights wq along the ray direction ΩΩΩ

φ̄
K
K =

1
VK

∫
K

dr
∫

4π

dΩ∑
q

wq exp(−τ(r,r−RqΩΩΩ))S(r−RqΩΩΩ,ΩΩΩ) ,
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introducing angular quadrature d with solid angle weights ωd

φ̄
K
K =

1
VK

∫
K

dr∑
d

ωd ∑
q

wq exp(−τ(r,r−RqΩΩΩd))S(r−RqΩΩΩ,ΩΩΩd) ,

and lastly introducing 3D quadrature j with volumetric weights w j we have

φ̄
K
K =

1
VK

∑
j

w j ∑
d

ωd ∑
q

wq exp(−τ(r j,r j−RqΩΩΩd))S(r j−RqΩΩΩ,ΩΩΩd) . (2)

3.2.3 Higher-order spatial moments

With the addition of a basis function b(r) in the target cell K, the spatial moment of the
scalar flux in target cell K due to source cell K′ is then

φ
K′
K,i(r) =

∫
K

dr bi(r)
∫

K′
dr′

exp(−τ(r′,r))
R2(r)

S(r′,ΩΩΩR) , ∀r ∈ K ,

where R= r′−r, R= ||R||, and ΩΩΩR =R/R. Introducing 3D quadrature q′ in the source cell
K′ with volumetric weights wq′ and 3D quadrature q in the target cell K with volumetric
weights wq leads to

φ
K′
K,i(r)≈∑

q
wqbi(rq)∑

q′
wq′

exp(−τ(rq′,rq))

R2
q′q(r)

S(rq′,ΩΩΩq′q) , ∀r ∈ K . (3)

The same method is applied to the target = source cell (K′ = K) method as

φ
K
K,i(r) =

∫
K

dr bi(r)
∫

4π

dΩ

∫ R+(r,ΩΩΩ)

0
dR exp(−τ(r,r−RΩΩΩ))S(r−RΩΩΩ,ΩΩΩ) , ∀r ∈ K ,

and with the same quadratures used in Eq. (2) as

φ
K
K,i(r)≈∑

j
w jbi(r j)∑

d
ωd ∑

q
wq exp(−τ(r j,r j−RqΩΩΩd))S(r j−RqΩΩΩ,ΩΩΩd) , ∀r ∈ K .

(4)
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3.2.4 Higher-order angular moments

When scattering is anisotropic, one needs a higher angular moment than the scalar flux.
The angular moment of the scalar flux in target cell K due to source cell K′ is

φ
K′
K,k(r) =

∫
K′

dr′
∫

4π

dΩ Ak(ΩΩΩ)
exp(−τ(r′,r))

R2(r)
S(r′,ΩΩΩ)δ2(ΩΩΩ ·ΩΩΩR) , ∀r ∈ K ,

=
∫

K′
dr′Ak(ΩΩΩR)

exp(−τ(r′,r))
R2(r)

S(r′,ΩΩΩR) , ∀r ∈ K .

Again introducing 3D quadrature q′ in the source cell K′ we have

φ
K′
K,k(r)≈∑

q′
wq′Ak(ΩΩΩq′(r))

exp(−τ(rq′,r))
R2

q′(r)
S(rq′,ΩΩΩq′(r)) , ∀r ∈ K . (5)

where ΩΩΩq′(r) is the direction from source quadrature point rq′ to r and Rq′(r) is the distance
from source quadrature point rq′ to r.
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4 Implementation

The ray tracing module developed by D. Gaston for MOOSE is currently in development
and not presently available in production. Pre-production access was given for the purposes
of making the initial implementation of the uncollided flux treatment in Rattlesnake. It
provides a straight-forward framework for the tracing of rays in an arbitrary mesh. The
user is provided with a method to generate rays and the ability to store solutions along
ray segments and at the termination of a ray. For the purposes of this report, only the
implementation in Rattlesnake on top of the ray tracing module is discussed.

The implementation thus far has the ability to determine the element-average uncollided
flux as a result of a set of point sources and volumetric sources. This solution can then
be stored and utilized as a first-collided source in Rattlesnake. Further goals are discussed
later.

The ability to recursively generate, communicate, and propagate rays exists in the ray tracing
module. This method was chosen in order to maximize the parallel efficiency in cases
where only localized sources exist in the mesh. When the mesh is partitioned in the case of
a distributed mesh, rays can only be started on the processors that contain the portion of the
mesh that the sources are in. As a result of this, the remaining processors that do not contain
sources sit idle waiting to receive rays. By using a recursive algorithm, sources containing
processors are able to both generate and propagate rays out of their local domains in order
to provide work for the idle processors. Note the distinction between generation and exe-
cution: a generated ray is only a start point, end point, and initialization of data for a single
ray, while an executed ray is the propagation of said generated ray.

4.1 Algorithm

The general process followed in a distributed mesh is as follows:

1. Each processor stores the local ray targets (portions of the domain where the uncol-
lided flux is desired). This is a list of elements and the points in each element that
need to be traced to, in addition to the necessary weight if quadrature is used.

2. The list of local ray targets is serialized and communicated to all other processors
so that each source processor has the knowledge of the end points of each ray that it
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spawns.

3. Each processor determines if it contains any sources as provided by the user. If a
processor does not contain any sources, it waits to receive and propagate rays. If
it contains sources, it generates a ray for each local source point and target point
pair and executes the rays. To make these calls recursive, rays are first generated
and then executed once a user defined number of rays has been generated. After
a chunk of rays has been executed, a source processor will propagate the generated
rays in addition to propagating any other rays that have been received by neighboring
processors, and then will again continue generation.
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5 Verification

5.1 Point Source to Volumetric Target

A point source that emits 1 n/s is located at (0.5,0.5,0.5) in a 10×10×2 mesh of cuboid
elements of width 1 cm × 1 cm × 1 cm. The desired quantity is the integrated uncollided
flux in each element (the target elements) except for the element that contains the source
(the element with lower vertex (0,0,0) and upper vertex (1,1,1)). The total cross section of
the medium is then varied and each element evaluated for multiple Gaussian quadratures.
The reference solution was evaluated numerically to a relative error tolerance of 1×10−12.
The results for two of the target elements are as seen below in Table 1 and Figure 2.

Table 1: Point source to volumetric target results in void and a uniform absorber for two
elements.

Element Quad pts. Void Uniform absorber (Σt = 0.5 cm)
(corners) (1D) Solution Relative error Solution Relative error

(0,5,0),
(1,6,1)

1 3.1830988618×10−3 3.2626694867×10−3 2.6128466569×10−4 2.1467300816×10−2

2 3.1933217069×10−3 6.1546384388×10−5 2.6692936268×10−4 3.2744340364×10−4

3 3.1935179346×10−3 1.0078175060×10−7 2.6701654024×10−4 9.5622707194×10−7

4 3.1935182545×10−3 6.0666534586×10−10 2.6701679429×10−4 4.7996283983×10−9

5 3.1935182564×10−3 1.0592426617×10−12 2.6701679556×10−4 1.1241697843×10−13

Reference 3.1935182564×10−3 2.6701679557×10−4

(0,5,1),
(1,6,2)

1 1.5915494309×10−3 1.6754904027×10−3 4.6382832411×10−5 1.7853101037×10−2

2 1.5942238602×10−3 2.0875784420×10−6 4.7225741557×10−5 4.6739245577×10−6

3 1.5942205464×10−3 8.9790695168×10−9 4.7225967182×10−5 1.0363500629×10−7

4 1.5942205321×10−3 1.0680974468×10−11 4.7225962285×10−5 5.9686581391×10−11

5 1.5942205321×10−3 3.1283814836×10−15 4.7225962288×10−5 1.3243756145×10−13

Reference 1.5942205321×10−3 4.7225962288×10−5

As the distance between source and target element is increased, the solid angle of the target
element as viewed by the source decreases. The solution error then decreases as the source
and target distance increases. In order to visualize this effect, the relative errors for each
target element in the mesh were plotted as seen below in Figures 3 and 4. A small target
quadrature was utilized in each case in order to represent the error differential as much as
possible.
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(5,5,0) element, Σt = 0.5 cm

Figure 2: Comparison of relative errors in the integrated uncollided flux for two elements
(where an element is defined by its lower corner) in a homogeneous medium with varying
absorption.
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Figure 3: Comparison of relative errors in the integrated uncollided flux in each element in
a void medium with 8 Gaussian quadrature points per element.
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Figure 4: Comparison of relative errors in the integrated uncollided flux in each element in
an absorbing medium (Σt = 0.5 cm) with 8 Gaussian quadrature points per element.

5.2 Volumetric Source to Volumetric Targets

A volumetric source that emits 1 n/cm3·s is located in the element with corners (0,0,0)
and (1,1,1) in a 10×10×2 mesh of cuboid elements of width 1 cm × 1 cm × 1 cm. The
desired quantity again is the integrated uncollided flux in each element (the target elements)
except for the element that contains the source (the element with lower vertex (0,0,0) and
upper vertex (1,1,1)). The total cross section of the targets and source element is then
varied. The reference solution was obtained by using the ray-tracing implementation with
1000 Gaussian quadrature points per element and a uniform mesh refinement of 4. The
results for two of the target elements are as seen below in Table 2 and Figure 5.
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Table 2: Volumetric source to volumetric target results for the element defined by the cor-
ners (4,0,0) and (5,1,1) and the element defined by the corners (8,0,0) and (9,1,1).

Medium
Quad pts. x = 4 element x = 8 element

(1D) Solution Relative error Solution Relative error

Void

1 4.9735919716×10−3 1.0181726448×10−2 1.2433979929×10−3 2.5892932111×10−3

2 5.0232227257×10−3 3.0447322665×10−4 1.2466021624×10−3 1.9019678231×10−5

3 5.0247487574×10−3 7.7038059141×10−7 1.2466258563×10−3 1.3229412905×10−8

4 5.0247525910×10−3 7.4378389145×10−9 1.2466258728×10−3 2.9565073448×10−11

5 5.0247526283×10−3 1.9902659579×10−11 1.2466258728×10−3 9.1493423194×10−14

Reference 5.0247526284×10−3 1.2466258728×10−3

Source
Σs

t = 0.1 cm

Target
Σt

t = 0.1 cm

1 3.3338983994×10−3 1.5059305153×10−2 5.5869473214×10−4 5.4848549938×10−3

2 3.3834902226×10−3 4.0828733986×10−4 5.6175692013×10−4 3.3949236368×10−5

3 3.3848684216×10−3 1.1230851004×10−6 5.6177597643×10−4 2.7705646541×10−8

4 3.3848721877×10−3 1.0461899537×10−8 5.6177599196×10−4 5.8622371655×10−11

5 3.3848722230×10−3 2.9212231746×10−11 5.6177599199×10−4 1.3779876004×10−13

Reference 3.3848722231×10−3 5.6177599199×10−4

Source
Σs

t = 0.1 cm

Target
Σt

t = 0.2 cm

1 2.3493584941×10−3 1.6671993197×10−2 2.6390870463×10−4 6.8330566361×10−3

2 2.3880376191×10−3 4.8277942236×10−4 2.6571172491×10−4 4.7755092326×10−5

3 2.3891879848×10−3 1.2919325826×10−6 2.6572440409×10−4 3.9567742807×10−8

4 2.3891910414×10−3 1.2554813836×10−8 2.6572441458×10−4 8.8442898168×10−11

5 2.3891910714×10−3 3.3097241939×10−11 2.6572441460×10−4 1.5096648323×10−13

Reference 2.3891910714×10−3 2.6572441460×10−4
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Figure 5: Comparison of relative errors in the integrated uncollided flux for two elements
with a volumetric source and target. Element x = 4 is the element defined by the corners
(4,0,0) and (5,1,1) and element x = 8 is the element defined by the corners (8,0,0) and
(9,1,1). Σs

t is the source cross section and Σt
t is the target cross section.
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5.3 Kobayashi Benchmark

The Kobayashi 3-D benchmark void problems proposed by Kobayashi [7] consist of two
sets of one-group source problems with similar geometry. The first set of problems only
contains void and a pure absorbing medium, while the other replaces the pure absorber
with a material which has a scattering cross-section of 50% of the total-cross section. In
particular, the pure absorbing case of problem ii was chosen as a visual verification for the
implementation (and more complex test) thus far. The geometry is as follows in Figure
6. The total cross sections for regions 1, 2, and 3 are 0.1 cm−1, 10−4 cm, and 0.1 cm−1,
respectively. The source strength is 1.0 n/cm3·s.

(a) x− y plane (b) x− z plane (c) y− z plane

Figure 6: The geometry for the Kobayashi benchmark problem ii. [7]

As the ray-tracing implementation does not currently support reflecting boundary condi-
tions, one set of the source elements was mirrored across each reflective boundary in the
input file. Due to this, the axes seen above in the benchmark specifications are translated
by 10 cm in each direction for each of the result plots below. The results were obtained
in a mesh of elements 5 cm × 5 cm × 5 cm. Rays were traced from source elements that
contained 343 Gaussian quadrature points each, to target element centroids.
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Figure 7: The cell-averaged uncollided flux result for the Kobayashi benchmark problem
ii in a pure absorber. Viewed is the duct extending directly from the source elements. The
contour lines are evenly spaced between 1 and 10−3 (log scale). The axes are shifted 10
cm in every direction compared to the benchmark geometries in order to account for the
reflecting boundaries.
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Figure 8: The cell-averaged uncollided flux result for the Kobayashi benchmark problem ii
in a pure absorber. Viewed is the top duct plane extending towards the rear y− z face. The
contour lines are evenly spaced between 10−4 and 10−6 (log scale). The axes are shifted
10 cm in every direction compared to the benchmark geometries in order to account for the
reflecting boundaries.
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6 Future Work

The longer-term goal of this research is to utilize this implementation for both first- and last-
collided source calculations in Rattlesnake. An initial implementation has been completed
thus far and the future goals are as follows.

6.1 Ray-Tracing Functionality

6.1.1 Tracing to target surfaces and points

There exist cases where an exiting flux is desired on a surface, or a where point flux value is
desired. The ray tracing module supports only constant monomial values on each element
at the time of this report. The theory behind tracing instead to points and surfaces is similar
to the theory already discussed above. The significant issue lies in the ray tracing expan-
sion beyond constant monomial values and a clean implementation in MOOSE in which is
able to store data into element quadrature.

6.1.2 Reflective boundary conditions

The ray tracing module currently supports reflective boundary conditions, but the primary
task is spawning rays in the directions such that they will reflect to the desired target points.
For each reflective boundary, each target point is mirrored across the boundary. For each
source point, a ray is then spawned towards the mirrored image of each target point and the
ray tracing module handles the reflection appropriately. If there is more than one reflected
boundary, target points will be mirrored multiple times in order to determine the twice,
third, etc., reflected source contribution at each target point. In cases where there is a
potential for infinite reflection, the ray is to be killed after it has traveled a sufficient distance
that its source contribution is minimal.
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6.2 Methods development

6.2.1 First and last-collided Source

The current implementation is a standalone capability, which takes as input a set of target
elements and source elements and returns the uncollided flux solution. In order for the
ray-tracer to be used in Rattlesnake calculations, it is necessary to implement it into the
action system in a manner that the user would enable a first and last-collided source option.
Through the action system, the ray-tracer will be executed and will make available the
mesh-wide uncollided flux as necessary for the transport calculation (as a first and last-
collided source).

6.2.2 Spatial and angular moments

The current implementation returns only cell-averaged uncollided fluxes. As a result of
this, the only method to obtain a refined source for use in a transport calculation is to refine
the ray-tracing mesh and then superimpose the ray-tracing solution on a coarser mesh for
use in the SN calculation. This is potentially costly due to the increased number of segments
required for each generated ray.

With materials whose scattering cross sections are not isotropic, the zeroth angular moment
of the uncollided flux is not sufficient for use in any collided source calculations. There is
also desire for the angular flux solution on a surface, which would require higher moments.

Both implementations are straight-forward and the theory is already written for this imple-
mentation. The data carried by each traversed ray is user-set and scaled as necessary.
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6.3 Conclusions

With TREAT restart imminent, likely as soon as November 2017, modeling and simulation
efforts at INL have focused on calculation of steady-state fluxes and time-dependent fluxes
with thermal feedback within the core using Rattlesnake along with BISON in MAM-
MOTH. Such capabilities will be essential for initial simulation of transient core behavior,
initially to be used for experiment design and interpretation of experimental measurements.
Startup measurements will be performed in early 2018 to be used to validate these methods.
Early measurements will not use the hodoscope system for fuel monitoring.

However, as TREAT experimental measurement capabilities mature in the years following
restart, experiment visualization efforts will also resume using the fast-neutron hodoscope.
Simulation of neutron transport between a target fuel sample and the hodoscope detectors
will allow improvement of experiment design to maximize hodoscope imagery. In addi-
tion, efforts are underway to replace the current hodoscope with a modern high-resolution
system. Design calculations currently are using Monte Carlo methods, requiring significant
computational effort while still yielding large statistical uncertainties, challenging design
efforts.

The work described in this report is the first stage of a longer-term research/development
project to provide an efficient and accurate method for solution of the transport equation
that will account for the strongly anisotropic radiation transport through hodoscope col-
limator ducts. We have derived the method to compute the uncollided flux for any target
cells within a 3-D finite element meshm and successfully applied Gaston’s ray tracing algo-
rithm within Rattlesnake to lay the groundwork needed to develop the ability to determine
the element-average uncollided fluxes as a result of a set of point sources and volumetric
sources. The Kobayashi set of 3-D benchmark void problems has been used to demonstrate
the viability of the approach. Ultimately, the methods developed here will be incorporated
within Rattlesnake as an action system in such a manner that a Rattlesnake user would
enable a first and last-collided source option to aid in hodoscope calculations. And al-
though the TREAT hodoscope is the motivation for this work, the methods developed here
will aid in deep penetration streaming calculations in other neutron transport problems, as
demonstrated in the Kobayashi calculations.
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